Bitcoin Generator Version 5.1.0 Free Download

Masari: Simple Private Money

Masari (MSR) is a scalability-focused, untraceable, secure, and fungible cryptocurrency using the RingCT protocol. Masari is the first CryptoNote coin to develop uncle mining and a fully client side web wallet.
[link]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to ethereum [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to privacycoins [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to CryptoCurrencies [link] [comments]

The Privacy Coin Guide Part 1

As interest picks up in crypto again, I want to share this post I made on privacy coins again to just give the basics of their evolution. This is only part 1, and parts 2 and 3 are not available in this format, but this part is informative and basic.
If you’re looking for a quick and easy way to assess what the best privacy coin in the current space is, which has the best features, or which is most likely to give high returns, then this is not that guide. My goal is to give you the power to make your own decisions, to clearly state my biases, and educate. I really wanted to understand this niche of the crypto-space due to my background and current loyalties[1], and grasp the nuances of the features, origins and timelines of technologies used in privacy coins, while not being anything close to a developer myself. This is going to be a 3-part series, starting with an overview and basic review of the technology, then looking at its implications, and ending with why I like a specific project. It might be mildly interesting or delightfully educational. Cryptocurrencies are young and existing privacy coins are deploying technology that is a work in progress. This series assumes a basic understanding of how blockchains work, specifically as used in cryptocurrencies. If you don’t have that understanding, might I suggest that you get it? [2],[3],[4] Because cryptocurrencies have a long way to go before reaching their end-game: when the world relies on the technology without understanding it. So, shall we do a deep dive into the privacy coin space?

FIRST THERE WAS BITCOIN

Cryptocurrencies allow you to tokenize value and track its exchange between hands over time, with transaction information verified by a distributed network of users. The most famous version of a cryptocurrency in use is Bitcoin, defined as peer-to-peer electronic cash. [5] Posted anonymously in 2008, the whitepaper seemed to be in direct response to the global financial meltdown and public distrust of the conventional banking and financing systems. Although cryptographic techniques are used in Bitcoin to ensure that (i) only the owner of a specific wallet has the authority to spend funds from that wallet, (ii) the public address is linked but cannot be traced by a third party to the private address (iii) the information is stored via cryptographic hashing in a merkle tree structure to ensure data integrity, the actual transaction information is publicly visible on the blockchain and can be traced back to the individual through chain analysis.[6] This has raised fears of possible financial censorship or the metaphorical tainting of money due to its origination point, as demonstrated in the Silk Road marketplace disaster.[7] This can happen because fiat money is usually exchanged for cryptocurrency at some point, as crypto-enthusiasts are born in the real world and inevitably cash out. There are already chain analysis firms and software that are increasingly efficient at tracking transactions on the Bitcoin blockchain.[8] This lack of privacy is one of the limitations of Bitcoin that has resulted in the creation of altcoins that experiment with the different features a cryptocurrency can have. Privacy coins are figuring out how to introduce privacy in addition to the payment network. The goal is to make the cryptocurrency fungible, each unit able to be exchanged for equal value without knowledge of its transaction history – like cash, while being publicly verifiable on a decentralized network. In other words, anyone can add the math up without being able to see the full details. Some privacy solutions and protocols have popped up as a result:

CRYPTONOTE – RING SIGNATURES AND STEALTH ADDRESSES

Used in: Monero and Particl as its successor RING-CT, Bytecoin
In December 2012, CryptoNote introduced the use of ring signatures and stealth addresses (along with other notable features such as its own codebase) to improve cryptocurrency privacy.[9] An updated CryptoNote version 2 came in October 2013 [10](though there is some dispute over this timeline [11]), also authored under the name Nicolas van Saberhagen. Ring signatures hide sender information by having the sender sign a transaction using a signature that could belong to multiple users. This makes a transaction untraceable. Stealth addresses allow a receiver to give a single address which generates a different public address for funds to be received at each time funds are sent to it. That makes a transaction unlinkable. In terms of privacy, CryptoNote gave us a protocol for untraceable and unlinkable transactions. The first implementation of CryptoNote technology was Bytecoin in March 2014 (timeline disputed [12]), which spawned many children (forks) in subsequent years, a notable example being Monero, based on CryptoNote v2 in April 2014.
RING SIGNATURES and STEALTH ADDRESSES

PROS

– Provides sender and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume
-Does not hide transaction information if not combined with another protocol.

COINJOIN

Used in: Dash
Bitcoin developer Gregory Maxwell proposed a set of solutions to bring privacy to Bitcoin and cryptocurrencies, the first being CoinJoin (January 28 – Aug 22, 2013).[13],[14] CoinJoin (sometimes called CoinSwap) allows multiple users to combine their transactions into a single transaction, by receiving inputs from multiple users, and then sending their outputs to the multiple users, irrespective of who in the group the inputs came from. So, the receiver will get whatever output amount they were supposed to, but it cannot be directly traced to its origination input. Similar proposals include Coinshuffle in 2014 and Tumblebit in 2016, building on CoinJoin but not terribly popular [15],[16]. They fixed the need for a trusted third party to ‘mix’ the transactions. There are CoinJoin implementations that are being actively worked on but are not the most popular privacy solutions of today. A notable coin that uses CoinJoin technology is Dash, launched in January 2014, with masternodes in place of a trusted party.
COINJOIN

PROS

– Provides sender and receiver privacy
– Easy to implement on any cryptocurrency
– Lightweight
– Greater scalability with bulletproofs
– Mature technology

CONS

– Least anonymous privacy solution. Transaction amounts can be calculated
– Even without third-party mixer, depends on wealth centralization of masternodes

ZEROCOIN

Used in: Zcoin, PIVX
In May 2013, the Zerocoin protocol was introduced by John Hopkins University professor Matthew D. Green and his graduate students Ian Miers and Christina Garman.[17] In response to the need for use of a third party to do CoinJoin, the Zerocoin proposal allowed for a coin to be destroyed and remade in order to erase its history whenever it is spent. Zero-knowledge cryptography and zero-knowledge proofs are used to prove that the new coins for spending are being appropriately made. A zero-knowledge proof allows one party to prove to another that they know specific information, without revealing any information about it, other than the fact that they know it. Zerocoin was not accepted by the Bitcoin community as an implementation to be added to Bitcoin, so a new cryptocurrency had to be formed. Zcoin was the first cryptocurrency to implement the Zerocoin protocol in 2016. [18]
ZEROCOIN

PROS

– Provides sender and receiver privacy
– Supply can be audited
– Relatively mature technology
– Does not require a third-party

CONS

– Requires trusted setup (May not be required with Sigma protocol)
– Large proof sizes (not lightweight)
– Does not provide full privacy for transaction amounts

ZEROCASH

Used in: Zcash, Horizen, Komodo, Zclassic, Bitcoin Private
In May 2014, the current successor to the Zerocoin protocol, Zerocash, was created, also by Matthew Green and others (Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza).[19] It improved upon the Zerocoin concept by taking advantage of zero-knowledge proofs called zk-snarks (zero knowledge succinct non-interactive arguments of knowledge). Unlike Zerocoin, which hid coin origins and payment history, Zerocash was faster, with smaller transaction sizes, and hides transaction information on the sender, receiver and amount. Zcash is the first cryptocurrency to implement the Zerocash protocol in 2016. [20]
ZEROCASH

PROS

– Provides full anonymity. Sender, receiver and amount hidden.
– Privacy can be default?
– Fast due to small proof sizes.
– Payment amount can be optionally disclosed for auditing
– Does not require any third-party

CONS

– Requires trusted setup. (May be improved with zt-starks technology)
– Supply cannot be audited. And coins can potentially be forged without proper implementation.
– Private transactions computationally intensive (improved with Sapling upgrade)

CONFIDENTIAL TRANSACTIONS

Used in: Monero and Particl with Ring Signatures as RING-CT
The next proposal from Maxwell was that of confidential transactions, proposed in June 2015 as part of the Sidechain Elements project from Blockstream, where Maxwell was Chief Technical Officer.[21],[22] It proposed to hide the transaction amount and asset type (e.g. deposits, currencies, shares), so that only the sender and receiver are aware of the amount, unless they choose to make the amount public. It uses homomorphic encryption[23] to encrypt the inputs and outputs by using blinding factors and a kind of ring signature in a commitment scheme, so the amount can be ‘committed’ to, without the amount actually being known. I’m terribly sorry if you now have the urge to go and research exactly what that means. The takeaway is that the transaction amount can be hidden from outsiders while being verifiable.
CONFIDENTIAL TRANSACTIONS

PROS

– Hides transaction amounts
– Privacy can be default
– Mature technology
– Does not require any third-party

CONS

– Only provides transaction amount privacy when used alone

RING-CT

Used in: Monero, Particl
Then came Ring Confidential transactions, proposed by Shen-Noether of Monero Research Labs in October 2015.[24] RingCT combines the use of ring signatures for hiding sender information, with the use of confidential transactions (which also uses ring signatures) for hiding amounts. The proposal described a new type of ring signature, A Multi-layered Linkable Spontaneous Anonymous Group signature which “allows for hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation”.[25] RingCT was implemented in Monero in January 2017 and made mandatory after September 2017.
RING -CONFIDENTIAL TRANSACTIONS

PROS

– Provides full anonymity. Hides transaction amounts and receiver privacy
– Privacy can be default
– Mature technology
– Greater scalability with bulletproofs
– Does not require any third-party

CONS

– Privacy not very effective without high volume

MIMBLEWIMBLE

Used in: Grin
Mimblewimble was proposed in July 2016 by pseudonymous contributor Tom Elvis Jedusorand further developed in October 2016 by Andrew Poelstra.[26],[27] Mimblewimble is a “privacy and fungibility focused cryptocoin transaction structure proposal”.[28] The key words are transaction structure proposal, so the way the blockchain is built is different, in order to accommodate privacy and fungibility features. Mimblewimble uses the concept of Confidential transactions to keep amounts hidden, looks at private keys and transaction information to prove ownership of funds rather than using addresses, and bundles transactions together instead of listing them separately on the blockchain. It also introduces a novel method of pruning the blockchain. Grin is a cryptocurrency in development that is applying Mimblewimble. Mimblewimble is early in development and you can understand it more here [29].
MIMBLEWIMBLE

PROS

– Hides transaction amounts and receiver privacy
– Privacy is on by default
– Lightweight
– No public addresses?

CONS

– Privacy not very effective without high volume
– Sender and receiver must both be online
– Relatively new technology

ZEXE

Fresh off the minds of brilliant cryptographers (Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, Howard Wu), in October 2018 Zexe proposed a new cryptographic primitive called ‘decentralized private computation.[30] It allows users of a decentralized ledger to “execute offline computations that result in transactions”[31], but also keeps transaction amounts hidden and allows transaction validation to happen at any time regardless of computations being done online. This can have far reaching implications for privacy coins in the future. Consider cases where transactions need to be automatic and private, without both parties being present.

NETWORK PRIVACY

Privacy technologies that look at network privacy as nodes communicate with each other on the network are important considerations, rather than just looking at privacy on the blockchain itself. Anonymous layers encrypt and/or reroute data as it moves among peers, so it is not obvious who they originate from on the network. They are used to protect against surveillance or censorship from ISPs and governments. The Invisible Internet Project (I2P) is an anonymous network layer that uses end to end encryption for peers on a network to communicate with each other.[32] Its history dates back to 2003. Kovri is a Monero created implementation of I2P.[33] The Onion Router (Tor) is another anonymity layer [34]) that Verge is a privacy cryptocurrency that uses. But its historical link to the US government may be is concerning to some[35]. Dandelion transaction relay is also an upcoming Bitcoin improvement proposal (BIP) that scrambles IP data that will provide network privacy for Bitcoin as transaction and other information is transmitted.[36],[37],[38]

UPCOMING

Monero completed bulletproofs protocol updates that reduce RINGCT transaction sizes and thus transaction fee costs. (Bulletproofs are a replacement for range proofs used in confidential transactions that aid in encrypting inputs and outputs by making sure they add to zero).
Sigma Protocol – being actively researched by Zcoin team as of 2018 to replace Zerocoin protocol so that a trusted setup is not required.[39] There is a possible replacement for zk-snarks, called zk-starks, another form of zero-knowledge proof technology, that may make a trusted set-up unnecessary for zero-knowledege proof coins.[40]

PART 1 CONCLUSION OF THE PRIVACY COIN GUIDE ON THE TECHNOLOGY BEHIND PRIVACY COINS

Although Bitcoin is still a groundbreaking technology that gives us a trust-less transaction system, it has failed to live up to its expectations of privacy. Over time, new privacy technologies have arrived and are arriving with innovative and exciting solutions for Bitcoin’s lack of fungibility. It is important to note that these technologies are built on prior research and application, but we are considering their use in cryptocurrencies. Protocols are proposed based on cryptographic concepts that show how they would work, and then developers actually implement them. Please note that I did not include the possibility of improper implementation as a disadvantage, and the advantages assume that the technical development is well done. A very important point is that coins can also adapt new privacy technologies as their merits become obvious, even as they start with a specific privacy protocol. Furthermore, I am, unfortunately, positive that this is not an exhaustive overview and I am only covering publicized solutions. Next, we’ll talk more about the pros and cons and give an idea of how the coins can be compared.

There's a video version that can be watched, and you can find out how to get the second two parts if you want on my website (video link on the page): https://cryptoramble.com/guide-on-privacy-coins/
submitted by CryptoRamble to ethtrader [link] [comments]

Groestlcoin 6th Anniversary Release

Introduction

Dear Groestlers, it goes without saying that 2020 has been a difficult time for millions of people worldwide. The groestlcoin team would like to take this opportunity to wish everyone our best to everyone coping with the direct and indirect effects of COVID-19. Let it bring out the best in us all and show that collectively, we can conquer anything.
The centralised banks and our national governments are facing unprecedented times with interest rates worldwide dropping to record lows in places. Rest assured that this can only strengthen the fundamentals of all decentralised cryptocurrencies and the vision that was seeded with Satoshi's Bitcoin whitepaper over 10 years ago. Despite everything that has been thrown at us this year, the show must go on and the team will still progress and advance to continue the momentum that we have developed over the past 6 years.
In addition to this, we'd like to remind you all that this is Groestlcoin's 6th Birthday release! In terms of price there have been some crazy highs and lows over the years (with highs of around $2.60 and lows of $0.000077!), but in terms of value– Groestlcoin just keeps getting more valuable! In these uncertain times, one thing remains clear – Groestlcoin will keep going and keep innovating regardless. On with what has been worked on and completed over the past few months.

UPDATED - Groestlcoin Core 2.18.2

This is a major release of Groestlcoin Core with many protocol level improvements and code optimizations, featuring the technical equivalent of Bitcoin v0.18.2 but with Groestlcoin-specific patches. On a general level, most of what is new is a new 'Groestlcoin-wallet' tool which is now distributed alongside Groestlcoin Core's other executables.
NOTE: The 'Account' API has been removed from this version which was typically used in some tip bots. Please ensure you check the release notes from 2.17.2 for details on replacing this functionality.

How to Upgrade?

Windows
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer.
OSX
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), run the dmg and drag Groestlcoin Core to Applications.
Ubuntu
http://groestlcoin.org/forum/index.php?topic=441.0

Other Linux

http://groestlcoin.org/forum/index.php?topic=97.0

Download

Download the Windows Installer (64 bit) here
Download the Windows Installer (32 bit) here
Download the Windows binaries (64 bit) here
Download the Windows binaries (32 bit) here
Download the OSX Installer here
Download the OSX binaries here
Download the Linux binaries (64 bit) here
Download the Linux binaries (32 bit) here
Download the ARM Linux binaries (64 bit) here
Download the ARM Linux binaries (32 bit) here

Source

ALL NEW - Groestlcoin Moonshine iOS/Android Wallet

Built with React Native, Moonshine utilizes Electrum-GRS's JSON-RPC methods to interact with the Groestlcoin network.
GRS Moonshine's intended use is as a hot wallet. Meaning, your keys are only as safe as the device you install this wallet on. As with any hot wallet, please ensure that you keep only a small, responsible amount of Groestlcoin on it at any given time.

Features

Download

iOS
Android

Source

ALL NEW! – HODL GRS Android Wallet

HODL GRS connects directly to the Groestlcoin network using SPV mode and doesn't rely on servers that can be hacked or disabled.
HODL GRS utilizes AES hardware encryption, app sandboxing, and the latest security features to protect users from malware, browser security holes, and even physical theft. Private keys are stored only in the secure enclave of the user's phone, inaccessible to anyone other than the user.
Simplicity and ease-of-use is the core design principle of HODL GRS. A simple recovery phrase (which we call a Backup Recovery Key) is all that is needed to restore the user's wallet if they ever lose or replace their device. HODL GRS is deterministic, which means the user's balance and transaction history can be recovered just from the backup recovery key.

Features

Download

Main Release (Main Net)
Testnet Release

Source

ALL NEW! – GroestlcoinSeed Savior

Groestlcoin Seed Savior is a tool for recovering BIP39 seed phrases.
This tool is meant to help users with recovering a slightly incorrect Groestlcoin mnemonic phrase (AKA backup or seed). You can enter an existing BIP39 mnemonic and get derived addresses in various formats.
To find out if one of the suggested addresses is the right one, you can click on the suggested address to check the address' transaction history on a block explorer.

Features

Live Version (Not Recommended)

https://www.groestlcoin.org/recovery/

Download

https://github.com/Groestlcoin/mnemonic-recovery/archive/master.zip

Source

ALL NEW! – Vanity Search Vanity Address Generator

NOTE: NVidia GPU or any CPU only. AMD graphics cards will not work with this address generator.
VanitySearch is a command-line Segwit-capable vanity Groestlcoin address generator. Add unique flair when you tell people to send Groestlcoin. Alternatively, VanitySearch can be used to generate random addresses offline.
If you're tired of the random, cryptic addresses generated by regular groestlcoin clients, then VanitySearch is the right choice for you to create a more personalized address.
VanitySearch is a groestlcoin address prefix finder. If you want to generate safe private keys, use the -s option to enter your passphrase which will be used for generating a base key as for BIP38 standard (VanitySearch.exe -s "My PassPhrase" FXPref). You can also use VanitySearch.exe -ps "My PassPhrase" which will add a crypto secure seed to your passphrase.
VanitySearch may not compute a good grid size for your GPU, so try different values using -g option in order to get the best performances. If you want to use GPUs and CPUs together, you may have best performances by keeping one CPU core for handling GPU(s)/CPU exchanges (use -t option to set the number of CPU threads).

Features

Usage

https://github.com/Groestlcoin/VanitySearch#usage

Download

Source

ALL NEW! – Groestlcoin EasyVanity 2020

Groestlcoin EasyVanity 2020 is a windows app built from the ground-up and makes it easier than ever before to create your very own bespoke bech32 address(es) when whilst not connected to the internet.
If you're tired of the random, cryptic bech32 addresses generated by regular Groestlcoin clients, then Groestlcoin EasyVanity2020 is the right choice for you to create a more personalised bech32 address. This 2020 version uses the new VanitySearch to generate not only legacy addresses (F prefix) but also Bech32 addresses (grs1 prefix).

Features

Download

Source

Remastered! – Groestlcoin WPF Desktop Wallet (v2.19.0.18)

Groestlcoin WPF is an alternative full node client with optional lightweight 'thin-client' mode based on WPF. Windows Presentation Foundation (WPF) is one of Microsoft's latest approaches to a GUI framework, used with the .NET framework. Its main advantages over the original Groestlcoin client include support for exporting blockchain.dat and including a lite wallet mode.
This wallet was previously deprecated but has been brought back to life with modern standards.

Features

Remastered Improvements

Download

Source

ALL NEW! – BIP39 Key Tool

Groestlcoin BIP39 Key Tool is a GUI interface for generating Groestlcoin public and private keys. It is a standalone tool which can be used offline.

Features

Download

Windows
Linux :
 pip3 install -r requirements.txt python3 bip39\_gui.py 

Source

ALL NEW! – Electrum Personal Server

Groestlcoin Electrum Personal Server aims to make using Electrum Groestlcoin wallet more secure and more private. It makes it easy to connect your Electrum-GRS wallet to your own full node.
It is an implementation of the Electrum-grs server protocol which fulfils the specific need of using the Electrum-grs wallet backed by a full node, but without the heavyweight server backend, for a single user. It allows the user to benefit from all Groestlcoin Core's resource-saving features like pruning, blocks only and disabled txindex. All Electrum-GRS's feature-richness like hardware wallet integration, multi-signature wallets, offline signing, seed recovery phrases, coin control and so on can still be used, but connected only to the user's own full node.
Full node wallets are important in Groestlcoin because they are a big part of what makes the system be trust-less. No longer do people have to trust a financial institution like a bank or PayPal, they can run software on their own computers. If Groestlcoin is digital gold, then a full node wallet is your own personal goldsmith who checks for you that received payments are genuine.
Full node wallets are also important for privacy. Using Electrum-GRS under default configuration requires it to send (hashes of) all your Groestlcoin addresses to some server. That server can then easily spy on your transactions. Full node wallets like Groestlcoin Electrum Personal Server would download the entire blockchain and scan it for the user's own addresses, and therefore don't reveal to anyone else which Groestlcoin addresses they are interested in.
Groestlcoin Electrum Personal Server can also broadcast transactions through Tor which improves privacy by resisting traffic analysis for broadcasted transactions which can link the IP address of the user to the transaction. If enabled this would happen transparently whenever the user simply clicks "Send" on a transaction in Electrum-grs wallet.
Note: Currently Groestlcoin Electrum Personal Server can only accept one connection at a time.

Features

Download

Windows
Linux / OSX (Instructions)

Source

UPDATED – Android Wallet 7.38.1 - Main Net + Test Net

The app allows you to send and receive Groestlcoin on your device using QR codes and URI links.
When using this app, please back up your wallet and email them to yourself! This will save your wallet in a password protected file. Then your coins can be retrieved even if you lose your phone.

Changes

Download

Main Net
Main Net (FDroid)
Test Net

Source

UPDATED – Groestlcoin Sentinel 3.5.06 (Android)

Groestlcoin Sentinel is a great solution for anyone who wants the convenience and utility of a hot wallet for receiving payments directly into their cold storage (or hardware wallets).
Sentinel accepts XPUB's, YPUB'S, ZPUB's and individual Groestlcoin address. Once added you will be able to view balances, view transactions, and (in the case of XPUB's, YPUB's and ZPUB's) deterministically generate addresses for that wallet.
Groestlcoin Sentinel is a fork of Groestlcoin Samourai Wallet with all spending and transaction building code removed.

Changes

Download

Source

UPDATED – P2Pool Test Net

Changes

Download

Pre-Hosted Testnet P2Pool is available via http://testp2pool.groestlcoin.org:21330/static/

Source

submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

Reddcoin (RDD) 02/20 Progress Report - Core Wallet v3.1 Evolution & PoSV v2 - Commits & More Commits to v3.1! (Bitcoin Core 0.10, MacOS Catalina, QT Enhanced Speed and Security and more!)

Reddcoin (RDD) Core Dev Team Informal Progress Report, Feb 2020 - As any blockchain or software expert will confirm, the hardest part of making successful progress in blockchain and crypto is invisible to most users. As developers, the Reddcoin Core team relies on internal experts like John Nash, contributors offering their own code improvements to our repos (which we would love to see more of!) and especially upstream commits from experts working on open source projects like Bitcoin itself. We'd like tothank each and everyone who's hard work has contributed to this progress.
As part of Reddcoin's evolution, and in order to include required security fixes, speed improvements that are long overdue, the team has up to this point incorporated the following code commits since our last v3.0.1 public release. In attempting to solve the relatively minor font display issue with MacOS Catalina, we uncovered a complicated interweaving of updates between Reddcoin Core, QT software, MacOS SDK, Bitcoin Core and related libraries and dependencies that mandated we take a holistic approach to both solve the Catalina display problem, but in doing so, prepare a more streamlined overall build and test system, allowing the team to roll out more frequent and more secure updates in the future. And also to include some badly needed fixes in the current version of Core, which we have tentatively labeled Reddcoin Core Wallet v3.1.
Note: As indicated below, v3.1 is NOT YET AVAILABLE FOR DOWNLOAD BY PUBLIC. We wil advise when it is.
The new v3.1 version should be ready for internal QA and build testing by the end of this week, with luck, and will be turned over to the public shortly thereafter once testing has proven no unexpected issues have been introduced. We know the delay has been a bit extended for our ReddHead MacOS Catalina stakers, and we hope to have them all aboard soon. We have moved with all possible speed while attempting to incorproate all the required work, testing, and ensuring security and safety for our ReddHeads.
Which leads us to: PoSV v2 activation and the supermajority on Mainnet at the time of this writing has reached 5625/9000 blocks or 62.5%. We have progressed quite well and without any reported user issues since release, but we need all of the community to participate! This activation, much like the funding mechanisms currently being debated by BCH and others, and employed by DASH, will mean not only a catalyst for Reddcoin but ensure it's future by providing funding for the dev team. As a personal plea from the team, please help us support the PoSV v2 activation by staking your RDD, no matter how large or small your amount of stake.
Every block and every RDD counts, and if you don't know how, we'll teach you! Live chat is fun as well as providing tech support you can trust from devs and community ReddHead members. Join us today in staking and online and collect some RDD "rain" from users and devs alike!
If you're holding Reddcoin and not staking, or you haven't upgraded your v2.x wallet to v3.0.1 (current release), we need you to help achieve consensus and activate PoSV v2! For details, see the pinned message here or our website or medium channel. Upgrade is simple and takes moments; if you're nervous or unsure, we're here to help live in Telegram or Discord, as well as other chat programs. See our website for links.
Look for more updates shortly as our long-anticipated Reddcoin Payment Gateway and Merchant Services API come online with point-of-sale support, as we announce the cross-crypto-project Aussie firefighter fundraiser program, as well as a comprehensive update to our development roadmap and more.
Work has restarted on ReddID and multiple initiatives are underway to begin educating and sharing information about ReddID, what it is, and how to use it, as we approach a releasable ReddID product. We enthusiastically encourage anyone interested in working to bring these efforts to life, whether writers, UX/UI experts, big data analysts, graphic artists, coders, front-end, back-end, AI, DevOps, the Reddcoin Core dev team is growing, and there's more opportunity and work than ever!
Bring your talents to a community and dev team that truly appreciates it, and share the Reddcoin Love!
And now, lots of commits. As v3.1 is not yet quite ready for public release, these commits have not been pushed publicly, but in the interests of sharing progress transparently, and including our ReddHead community in the process, see below for mind-numbing technical detail of work accomplished.
e5c143404 - - 2014-08-07 - Ross Nicoll - Changed LevelDB cursors to use scoped pointers to ensure destruction when going out of scope. *99a7dba2e - - 2014-08-15 - Cory Fields - tests: fix test-runner for osx. Closes ##4708 *8c667f1be - - 2014-08-15 - Cory Fields - build: add funcs.mk to the list of meta-depends *bcc1b2b2f - - 2014-08-15 - Cory Fields - depends: fix shasum on osx < 10.9 *54dac77d1 - - 2014-08-18 - Cory Fields - build: add option for reducing exports (v2) *6fb9611c0 - - 2014-08-16 - randy-waterhouse - build : fix CPPFLAGS for libbitcoin_cli *9958cc923 - - 2014-08-16 - randy-waterhouse - build: Add --with-utils (bitcoin-cli and bitcoin-tx, default=yes). Help string consistency tweaks. Target sanity check fix. *342aa98ea - - 2014-08-07 - Cory Fields - build: fix automake warnings about the use of INCLUDES *46db8ad51 - - 2020-02-18 - John Nash - build: add build.h to the correct target *a24de1e4c - - 2014-11-26 - Pavel Janík - Use complete path to include bitcoin-config.h. *fd8f506e5 - - 2014-08-04 - Wladimir J. van der Laan - qt: Demote ReportInvalidCertificate message to qDebug *f12aaf3b1 - - 2020-02-17 - John Nash - build: QT5 compiled with fPIC require fPIC to be enabled, fPIE is not enough *7a991b37e - - 2014-08-12 - Wladimir J. van der Laan - build: check for sys/prctl.h in the proper way *2cfa63a48 - - 2014-08-11 - Wladimir J. van der Laan - build: Add mention of --disable-wallet to bdb48 error messages *9aa580f04 - - 2014-07-23 - Cory Fields - depends: add shared dependency builder *8853d4645 - - 2014-08-08 - Philip Kaufmann - [Qt] move SubstituteFonts() above ToolTipToRichTextFilter *0c98e21db - - 2014-08-02 - Ross Nicoll - URLs containing a / after the address no longer cause parsing errors. *7baa77731 - - 2014-08-07 - ntrgn - Fixes ignored qt 4.8 codecs path on windows when configuring with --with-qt-libdir *2a3df4617 - - 2014-08-06 - Cory Fields - qt: fix unicode character display on osx when building with 10.7 sdk *71a36303d - - 2014-08-04 - Cory Fields - build: fix race in 'make deploy' for windows *077295498 - - 2014-08-04 - Cory Fields - build: Fix 'make deploy' when binaries haven't been built yet *ffdcc4d7d - - 2014-08-04 - Cory Fields - build: hook up qt translations for static osx packaging *25a7e9c90 - - 2014-08-04 - Cory Fields - build: add --with-qt-translationdir to configure for use with static qt *11cfcef37 - - 2014-08-04 - Cory Fields - build: teach macdeploy the -translations-dir argument, for use with static qt *4c4ae35b1 - - 2014-07-23 - Cory Fields - build: Find the proper xcb/pcre dependencies *942e77dd2 - - 2014-08-06 - Cory Fields - build: silence mingw fpic warning spew *e73e2b834 - - 2014-06-27 - Huang Le - Use async name resolving to improve net thread responsiveness *c88e76e8e - - 2014-07-23 - Cory Fields - build: don't let libtool insert rpath into binaries *18e14e11c - - 2014-08-05 - ntrgn - build: Fix windows configure when using --with-qt-libdir *bb92d65c4 - - 2014-07-31 - Cory Fields - test: don't let the port number exceed the legal range *62b95290a - - 2014-06-18 - Cory Fields - test: redirect comparison tool output to stdout *cefe447e9 - - 2014-07-22 - Cory Fields - gitian: remove unneeded option after last commit *9347402ca - - 2014-07-21 - Cory Fields - build: fix broken boost chrono check on some platforms *c9ed039cf - - 2014-06-03 - Cory Fields - build: fix whitespace in pkg-config variable *3bcc5ad37 - - 2014-06-03 - Cory Fields - build: allow linux and osx to build against static qt5 *01a44ba90 - - 2014-07-17 - Cory Fields - build: silence false errors during make clean *d1fbf7ba2 - - 2014-07-08 - Cory Fields - build: fix win32 static linking after libtool merge *005ae2fa4 - - 2014-07-08 - Cory Fields - build: re-add AM_LDFLAGS where it's overridden *37043076d - - 2014-07-02 - Wladimir J. van der Laan - Fix the Qt5 build after d95ba75 *f3b4bbf40 - - 2014-07-01 - Wladimir J. van der Laan - qt: Change serious messages from qDebug to qWarning *f4706f753 - - 2014-07-01 - Wladimir J. van der Laan - qt: Log messages with type>QtDebugMsg as non-debug *98e85fa1f - - 2014-06-06 - Pieter Wuille - libsecp256k1 integration *5f1f2e226 - - 2020-02-17 - John Nash - Merge branch 'switch_verification_code' into Build *1f30416c9 - - 2014-02-07 - Pieter Wuille - Also switch the (unused) verification code to low-s instead of even-s. *1c093d55e - - 2014-06-06 - Cory Fields - secp256k1: Add build-side changes for libsecp256k1 *7f3114484 - - 2014-06-06 - Cory Fields - secp256k1: add libtool as a dependency *2531f9299 - - 2020-02-17 - John Nash - Move network-time related functions to timedata.cpp/h *d003e4c57 - - 2020-02-16 - John Nash - build: fix build weirdness after 54372482. *7035f5034 - - 2020-02-16 - John Nash - Add ::OUTPUT_SIZE *2a864c4d8 - - 2014-06-09 - Cory Fields - crypto: create a separate lib for crypto functions *03a4e4c70 - - 2014-06-09 - Cory Fields - crypto: explicitly check for byte read/write functions *a78462a2a - - 2014-06-09 - Cory Fields - build: move bitcoin-config.h to its own directory *a885721c4 - - 2014-05-31 - Pieter Wuille - Extend and move all crypto tests to crypto_tests.cpp *5f308f528 - - 2014-05-03 - Pieter Wuille - Move {Read,Write}{LE,BE}{32,64} to common.h and use builtins if possible *0161cc426 - - 2014-05-01 - Pieter Wuille - Add built-in RIPEMD-160 implementation *deefc27c0 - - 2014-04-28 - Pieter Wuille - Move crypto implementations to src/crypto/ *d6a12182b - - 2014-04-28 - Pieter Wuille - Add built-in SHA-1 implementation. *c3c4f9f2e - - 2014-04-27 - Pieter Wuille - Switch miner.cpp to use sha2 instead of OpenSSL. *b6ed6def9 - - 2014-04-28 - Pieter Wuille - Remove getwork() RPC call *0a09c1c60 - - 2014-04-26 - Pieter Wuille - Switch script.cpp and hash.cpp to use sha2.cpp instead of OpenSSL. *8ed091692 - - 2014-04-20 - Pieter Wuille - Add a built-in SHA256/SHA512 implementation. *0c4c99b3f - - 2014-06-21 - Philip Kaufmann - small cleanup in src/compat .h and .cpp *ab1369745 - - 2014-06-13 - Cory Fields - sanity: hook up sanity checks *f598c67e0 - - 2014-06-13 - Cory Fields - sanity: add libc/stdlib sanity checks *b241b3e13 - - 2014-06-13 - Cory Fields - sanity: autoconf check for sys/select.h *cad980a4f - - 2019-07-03 - John Nash - build: Add a top-level forwarding target for src/ objects *f4533ee1c - - 2019-07-03 - John Nash - build: qt: split locale resources. Fixes non-deterministic distcheck *4a0e46e76 - - 2019-06-29 - John Nash - build: fix version dependency *2f61699d9 - - 2019-06-29 - John Nash - build: quit abusing AMCPPFLAGS *99b60ba49 - - 2019-06-29 - John Nash - build: avoid the use of top and abs_ dir paths *c8f673d5d - - 2019-06-29 - John Nash - build: Tidy up file generation output *5318bce57 - - 2019-06-29 - John Nash - build: nuke Makefile.include from orbit *672a25349 - - 2019-06-29 - John Nash - build: add stub makefiles for easier subdir builds *562b7c5a6 - - 2020-02-08 - John Nash - build: delete old Makefile.am's *066120079 - - 2020-02-08 - John Nash - build: Switch to non-recursive make
Whew! No wonder it's taken the dev team a while! :)
TL;DR: Trying to fix MacOS Catalina font display led to requiring all kinds of work to migrate and evolve the Reddcoin Core software with Apple, Bitcoin and QT components. Lots of work done, v3.1 public release soon. Also other exciting things and ReddID back under active dev effort.
submitted by TechAdept to reddCoin [link] [comments]

#Reddcoin ($RDD) Core Wallet Release 3.0.1 - PosV v2 SuperMajority Consensus Upgrade at 45.6% - Required Upgrade

Reddcoin (RDD) Core Wallet v3.0.1 - January 09, 2020
Version 3.0.1 is the official release version of Reddcoin Core. It is available for download at Reddcoin Core's Github repository here: https://github.com/reddcoin-project/reddcoin/releases/tag/v3.0.1
This release features PoSV v2.supermajority activation and new staking ruleset (and minor misc fixes). v3.0.1 is still not yet MacOS Catalina compatible. We are still working and should have that fix issued very soon. Sincere apologies to our Mac-using ReddHeads.
It is particularly important that all users upgrade, as once PoSV v2 is enforced, version 4 blocks will be rejected from the network entirely.
Therefore v3.0.1 is a "strongly recommended" update for all users. Note: If you have already installed v3.0.0, this upgrade is not required. If you have not yet upgraded from v2.0.x or earlier, this is a REQUIRED upgrade. Please install the newest version v3.0.1 to avoid losing functionality during supermajority activation of PoSV v2.
Reddcoin Core version 3.0.1 is now available from: https://github.com/reddcoin-project/reddcoin/releases Release Notes are available here and replicated below in this announcement: https://github.com/reddcoin-project/reddcoin/blob/mastedoc/release-notes.md
This is a new major version release of Reddcoin.
Previously, the original and subsequent versions of Reddcoin were taken from a fork of the Litecoin code base.
With the release of Reddcoin V2.0.0, the code was based directly from a fork of Bitcoin. This allows for better source control and feature implementation from upstream changes into the future
With the release of Reddcoin V3.0.0, the PoSV stake reward has been improved to allow for a target 5% network growth, in process re-incentivizing individual network stakers and providing for integrated dev support.
Upgrading to this release is strongly recommended and required for continued operation. Once a supermajority of 90% is reached, old wallets will no longer accept the new v5 blocks.
Please report bugs using the issue tracker at github:
https://github.com/reddcoin-project/reddcoin/issues
How to Upgrade
If you are running an older version of Reddcoin, shut it down. Wait until it has completely shut down (which may take a few minutes for older versions). Run the installer (on Windows) or just copy over /Applications/Reddcoin-Qt (on Mac) or reddcoind/reddcoin-qt (on Linux).
Start wallet. All done!
Reddcoin v3.0.0 introduced an updated PoSV method to better distribute staking rewards and target a overall 5% network growth. Staking and relay policy enhancements 
To implement PoSV v2, Reddcoin Core's block templates are now for version 5 blocks only. When PoSV v2 consensus (Supermajority 9000/10000) is reached, only v5 blocks will be accepted by the network.This equates to approximately 90% of blocks being generated over 1 week period. Status at any time may be viewed in node debug.log
Blockchain Download:
Blockchain data for both testnet and mainnet along with instructions can be downloaded from github. https://github.com/reddcoin-project/bootstrap_files
3.0.1 changelog
*83e212838 - John Nash, 2020-01-09 : really delete these files *3a1458ecd - Oliver Webb, 2020-01-08 : Added missing dependency libminiupnpc-dev for Jessie *d21915431 - Tiago Peralta, 2019-06-21 : Add vout to listtransactions/gettransaction *8d58ea7cf - Oliver Webb, 2020-01-08 : Script for downloading pre compiled binaries for Raspbian Jessie, Stretch or Buster *d4eced1bc - Oliver Webb, 2020-01-08 : Delete reddcoin_core_download_raspbian_stretch.sh *c5e9f91cf - Oliver Webb, 2020-01-08 : Delete reddcoin_core_download_raspbian_jessie.sh *5d5771b00 - Oliver Webb, 2020-01-08 : Delete reddcoin_core_download_raspbian_buster.sh *75c6ae91b - Oliver Webb, 2020-01-05 : add reddcoin-qt and remove starting daemon process *54c501787 - Oliver Webb, 2020-01-05 : add reddcoin-qt and remove starting daemon process *acb30a2b6 - Oliver Webb, 2020-01-05 : script files for Raspbian Jessie (also Stakebox) *cfddbe594 - John Nash, 2020-01-05 : Update copyright year and version *e46e5e7de - John Nash, 2020-01-05 : download script for pre compiled wallet *37386790a - John Nash, 2020-01-05 : change libssl deb packages links to github *9dbc772e6 - Oliver Webb, 2020-01-03 : download script for pre compiled wallet *857d697fd - Oliver Webb, 2020-01-03 : change libssl deb packages links to github *2cb74b9a8 - John Nash, 2019-12-31 : update copyright year *c641a1ab3 - Oliver Webb, 2019-12-30 : Raspberry Pi build script files for v3 wallet *a3f21a4a4 - John Nash, 2019-12-30 : add install script for building db4 update instructions for unix, osx, arm building using the db4 install script *5f6299b2a - John Nash, 2019-12-28 : docs: Update build notes for arm processors *465716c01 - John Nash, 2019-12-28 : test for arm devices *3fec3a535 - John Nash, 2018-02-02 : build: update source paths *5f6031ab4 - John Nash, 2019-12-28 : Scrypt n=1024 Pow hash based upon Colin Percival's Tarnsnap (2009) Modified by Artforz, coblee, pooler, wtogami, Nikolay Belikov, reddink *2fd4d91a0 - John Nash, 2019-12-24 : update copyright year *326828b36 - John Nash, 2019-12-24 : set release state true *8ebede0a6 - John Nash, 2019-12-24 : release notes *36df6fdfb - John Nash, 2019-12-23 : add check explictly for v5 blocks or greater *874dc1f0c - John Nash, 2019-12-17 : remove hardcoded global variable rearrange debug log output *763b25db8 - John Nash, 2019-12-17 : move copyright to new line *536baf635 - John Nash, 2019-12-17 : update version and set release state to false *cde9009f3 - John Nash, 2019-12-17 : update copyright year *ae41b7ed3 - John Nash, 2019-12-17 : set isSuperMajority to 90% for mainnet *e43e1c8ed - John Nash, 2019-12-10 : additional logging to verify isSuperMajority in the debug.log output *e31783cac - John Nash, 2019-12-05 : add/update public key for mainnet *405c6f002 - John Nash, 2019-12-05 : add log output for current inflation rate *9cc43c3f7 - John Nash, 2019-12-02 : determine calculated stake based on posv version *7baa3bf75 - John Nash, 2019-11-25 : check the posv transaction for correct pubkey *9ffa7ca38 - John Nash, 2019-11-21 : check for posv v1 or posv v2 blocks when calculating stake reward *39f7aad68 - John Nash, 2019-11-14 : add logging *0e283e6c3 - John Nash, 2019-11-13 : correct maths *74cbdeffd - John Nash, 2019-11-11 : use new posv v2 functions addidtional logging *35d7413b5 - John Nash, 2019-11-11 : add new proofofstakereward *3d917216c - John Nash, 2019-11-11 : get inflation adjustment *f63d17443 - John Nash, 2019-11-08 : add the developer output split fund output *ca263c9c9 - John Nash, 2019-11-05 : add dev key to chainparams *df6996ab0 - John Nash, 2019-11-05 : add block version checking *14b663479 - John Nash, 2019-11-05 : increase block version
Credits
Thanks to everyone who contributed to coding, testing and feedback for this release, notably:
@cryptognasher @techadept @chris @cryptobuze @harmonyq @mindredder @paxtech @Tiago Peralta 
Stake on!!
-Reddcoin (RDD) Core Development Team
submitted by TechAdept to reddCoin [link] [comments]

Information and FAQ

Welcome to the official IOTA subreddit.
If you are new you can find lots of information here, in the sidebar and please use the search button to see if your questions have been asked before. Please focus discussion on IOTA technology, ecosystem announcements, project development, apps, etc. Please direct help questions to /IOTASupport, and price discussions and market talk to /IOTAmarkets.
Before getting started it is recommended to read the IOTA_Whitepaper.pdf. I also suggest watching these videos first to gain a better understanding.
IOTA BREAKDOWN: The Tangle Vs. Blockchain Explained
IOTA tutorial 1: What is IOTA and some terminology explained

Information

Firstly, what is IOTA?

IOTA is an open-source distributed ledger protocol launched in 2015 that goes 'beyond blockchain' through its core invention of the blockless ‘Tangle’. The IOTA Tangle is a quantum-resistant Directed Acyclic Graph (DAG), whose digital currency 'iota' has a fixed money supply with zero inflationary cost.
IOTA uniquely offers zero-fee transactions & no fixed limit on how many transactions can be confirmed per second. Scaling limitations have been removed, since throughput grows in conjunction with activity; the more activity, the more transactions can be processed & the faster the network. Further, unlike blockchain architecture, IOTA has no separation between users and validators (miners / stakers); rather, validation is an intrinsic property of using the ledger, thus avoiding centralization.
IOTA is focused on being useful for the emerging machine-to-machine (m2m) economy of the Internet-of-Things (IoT), data integrity, micro-/nano- payments, and other applications where a scalable decentralized system is warranted.
More information can be found here.

Seeds

A seed is a unique identifier that can be described as a combined username and password that grants you access to your IOTA.
Your seed is used to generate the addresses and private keys you will use to store and send IOTA, so this should be kept private and not shared with anyone. If anyone obtains your seed, they can generate the private keys associated with your addresses and access your IOTA.

Non reusable addresses

Contrary to traditional blockchain based systems such as Bitcoin, where your wallet addresses can be reused, IOTA's addresses should only be used once (for outgoing transfers). That means there is no limit to the number of transactions an address can receive, but as soon as you've used funds from that address to make a transaction, this address should not be used anymore.
Why?
When an address is used to make an outgoing transaction, a random 50% of the private key of that particular address is revealed in the transaction signature, which effectively reduces the security of the key. A typical IOTA private key of 81-trits has 2781 possible combinations ( 8.7 x 10115 ) but after a single use, this number drops to around 2754 ( 2 x 1077 ), which coincidentally is close to the number of combinations of a 256-bit Bitcoin private key. Hence, after a single use an IOTA private key has about the same level of security as that of Bitcoin and is basically impractical to brute-force using modern technology. However, after a second use, another random 50% of the private key is revealed and the number of combinations that an attacker has to guess decreases very sharply to approximately 1.554 (~3 billion) which makes brute-forcing trivial even with an average computer.
Note: your seed is never revealed at at time; only private keys specific to each address.
The current light wallet prevents address reuse automatically for you by doing 2 things:
  1. Whenever you make an outgoing transaction from an address that does not consume its entire balance (e.g. address holds 10 Mi but you send only 5 Mi), the wallet automatically creates a new address and sends the change (5 Mi) to the new address.
  2. The wallet prevents you from performing a second outgoing transaction using the same address (it will display a “Private key reuse detected!” error).
This piggy bank diagram can help visualize non reusable addresses. imgur link
[Insert new Safe analogy].

Address Index

When a new address is generated it is calculated from the combination of a seed + Address Index, where the Address Index can be any positive Integer (including "0"). The wallet usually starts from Address Index 0, but it will skip any Address Index where it sees that the corresponding address has already been attached to the tangle.

Private Keys

Private keys are derived from a seeds key index. From that private key you then generate an address. The key index starting at 0, can be incremented to get a new private key, and thus address.
It is important to keep in mind that all security-sensitive functions are implemented client side. What this means is that you can generate private keys and addresses securely in the browser, or on an offline computer. All libraries provide this functionality.
IOTA uses winternitz one-time signatures, as such you should ensure that you know which private key (and which address) has already been used in order to not reuse it. Subsequently reusing private keys can lead to the loss of funds (an attacker is able to forge the signature after continuous reuse).
Exchanges are advised to store seeds, not private keys.

FAQ

Buying IOTA

How do I to buy IOTA?

Currently not all exchanges support IOTA and those that do may not support the option to buy with fiat currencies.
Visit this website for a Guide: How to buy IOTA
or Click Here for a detailed guide made by 450LbsGorilla

Cheapest way to buy IOTA?

You can track the current cheapest way to buy IOTA at IOTA Prices.
It tells you where & how to get the most IOTA for your money right now. There's an overview of the exchanges available to you and a buying guide to help you along.
IOTAPrices.com monitors all major fiat exchanges for their BTC & ETH rates and combines them with current IOTA rates from IOTA exchanges for easy comparison. Rates are taken directly from each exchange's official websocket. For fiat exchanges or exchanges that don't offer websockets, rates are refreshed every 60 seconds.

What is MIOTA?

MIOTA is a unit of IOTA, 1 Mega IOTA or 1 Mi. It is equivalent to 1,000,000 IOTA and is the unit which is currently exchanged.
We can use the metric prefixes when describing IOTA e.g 2,500,000,000 i is equivalent to 2.5 Gi.
Note: some exchanges will display IOTA when they mean MIOTA.

Can I mine IOTA?

No you can not mine IOTA, all the supply of IOTA exist now and no more can be made.
If you want to send IOTA, your 'fee' is you have to verify 2 other transactions, thereby acting like a minenode.

Storing IOTA

Where should I store IOTA?

It is not recommended to store large amounts of IOTA on the exchange as you will not have access to the private keys of the addresses generated.

Wallets

GUI Desktop (Full Node + Light Node)
Version = 2.5.6
Download: GUI v2.5.6
Guide: Download/Login Guide
Nodes: Status
Headless IRI (Full Node)
Version = 1.4.1.4
Download: Mainnet v1.4.1.4
Guide:
Find Neighbours: /nodesharing
UCL Desktop/Android/iOS (Light Node)
Version = Private Alpha Testing
Website: iota-ucl (Medium)
Android (Light Node)
Version = Beta
Download: Google Play
iOS (Light Node)
Version = Beta Testing
Website: https://iota.tools/wallet
Paper Wallet
Version = v1.3.6
Repo: GitHub
Seed Vault
Version = v1.0.2
Repo: GitHub7

What is a seed?

A seed is a unique identifier that can be described as a combined username and password that grants you access to your wallet.
Your seed is used to generate the addresses linked to your account and so this should be kept private and not shared with anyone. If anyone obtains your seed, they can login and access your IOTA.

How do I generate a seed?

You must generate a random 81 character seed using only A-Z and the number 9.
It is recommended to use offline methods to generate a seed, and not recommended to use any non community verified techniques. To generate a seed you could:

On a Linux Terminal

use the following command:
 cat /dev/urandom |tr -dc A-Z9|head -c${1:-81} 

On a Mac Terminal

use the following command:
 cat /dev/urandom |LC_ALL=C tr -dc 'A-Z9' | fold -w 81 | head -n 1 

With KeePass on PC

A helpful guide for generating a secure seed on KeePass can be found here.

With a dice

Dice roll template

Is my seed secure?

  1. All seeds should be 81 characters in random order composed of A-Z and 9.
  2. Do not give your seed to anyone, and don’t keep it saved in a plain text document.
  3. Don’t input your seed into any websites that you don’t trust.
Is Someone Going To Guess My IOTA Seed?
What are the odds of someone guessing your seed?
  • IOTA seed = 81 characters long, and you can use A-Z, 9
  • Giving 2781 = 8.7x10115 possible combinations for IOTA seeds
  • Now let's say you have a "super computer" letting you generate and read every address associated with 1 trillion different seeds per second.
  • 8.7x10115 seeds / 1x1012 generated per second = 8.7x10103 seconds = 2.8x1096 years to process all IOTA seeds.

Why does balance appear to be 0 after a snapshot?

When a snapshot happens, all transactions are being deleted from the Tangle, leaving only the record of how many IOTA are owned by each address. However, the next time the wallet scans the Tangle to look for used addresses, the transactions will be gone because of the snapshot and the wallet will not know anymore that an address belongs to it. This is the reason for the need to regenerate addresses, so that the wallet can check the balance of each address. The more transactions were made before a snapshot, the further away the balance moves from address index 0 and the more addresses have to be (re-) generated after the snapshot.

What happens if you reuse an address?

It is important to understand that only outgoing transactions reveal the private key and incoming transactions do not. If you somehow manage to receive iotas using an address after having used it previously to send iotas—let's say your friend sends iotas to an old address of yours—these iotas may be at risk.
Recall that after a single use an iota address still has the equivalent of 256-bit security (like Bitcoin) so technically, the iotas will still be safe if you do not try to send them out. However, you would want to move these iotas out eventually and the moment you try to send them out, your private key will be revealed a second time and it now becomes feasible for an attacker to brute-force the private key. If someone is monitoring your address and spots a second use, they can easily crack the key and then use it to make a second transaction that will compete with yours. It then becomes a race to see whose transaction gets confirmed first.
Note: The current wallet prevents you from reusing an address to make a second transaction so any iotas you receive with a 'used' address will be stuck. This is a feature of wallet and has nothing to do with the fundamental workings of IOTA.

Sending IOTA

What does attach to the tangle mean?

The process of making an transaction can be divided into two main steps:
  1. The local signing of a transaction, for which your seed is required.
  2. Taking the prepared transaction data, choosing two transactions from the tangle and doing the POW. This step is also called “attaching”.
The following analogy makes it easier to understand:
Step one is like writing a letter. You take a piece of paper, write some information on it, sign it at the bottom with your signature to authenticate that it was indeed you who wrote it, put it in an envelope and then write the recipient's address on it.
Step two: In order to attach our “letter” (transaction), we go to the tangle, pick randomly two of the newest “letters” and tie a connection between our “letter” and each of the “letters” we choose to reference.
The “Attach address” function in the wallet is actually doing nothing else than making an 0 value transaction to the address that is being attached.

Why is my transaction pending?

IOTA's current Tangle implementation (IOTA is in constant development, so this may change in the future) has a confirmation rate that is ~66% at first attempt.
So, if a transaction does not confirm within 1 hour, it is necessary to "reattach" (also known as "replay") the transaction one time. Doing so one time increases probability of confirmation from ~66% to ~89%.
Repeating the process a second time increases the probability from ~89% to ~99.9%.

How do I reattach a transaction.

Reattaching a transaction is different depending on where you send your transaction from. To reattach using the GUI Desktop wallet follow these steps:
  1. Click 'History'.
  2. Click 'Show Bundle' on the 'pending' transaction.
  3. Click 'Reattach'.
  4. Click 'Rebroadcast'. (optional, usually not required)
  5. Wait 1 Hour.
  6. If still 'pending', repeat steps 1-5 once more.

Does the private key get revealed each time you reattach a transaction?

When you use the reattach function in the desktop wallet, a new transaction will be created but it will have the same signature as the original transaction and hence, your private key will not revealed a second time.

What happens to pending transactions after a snapshot?

IOTA Network and Nodes

What incentives are there for running a full node?

IOTA is made for m2m economy, once wide spread adoption by businesses and the IOT, there will be a lot of investment by these businesses to support the IOTA network. In the meantime if you would like to help the network and speed up p2p transactions at your own cost, you can support the IOTA network by setting up a Full Node.
Running a full node also means you don't have to trust a 3rd party light node provider. By running a full node you get to take advantage of new features that might not be installed on 3rd party nodes.

How to set up a full node?

To set up a full node you will need to follow these steps:
  1. Download the full node software: either GUI, or headless CLI for lower system requirements and better performance.
  2. Get a static IP for your node.
  3. Join the network by adding 7-9 neighbours.
  4. Keep your full node up and running as much as possible.
A detailed user guide on how to set up a VTS IOTA Full Node from scratch can be found here.

How do I get a static IP?

To learn how to setup a hostname (~static IP) so you can use the newest IOTA versions that have no automated peer discovery please follow this guide.

How do I find a neighbour?

Are you a single IOTA full node looking for a partner? You can look for partners in these place:

Resources

You can find a wiki I have been making here.
More to come...
If you have any contributions or spot a mistake or clarification, please PM me or leave a comment.
submitted by Boltzmanns_Constant to Iota [link] [comments]

Breaking Down FLETA’s Proof-of-Formulation

Breaking Down FLETA’s Proof-of-Formulation

https://preview.redd.it/m9tv9pmwa9231.png?width=800&format=png&auto=webp&s=eecd16921f710203c220cd32a7bd42b0479d87d3
FLETA is a blockchain service platform designed for decentralized applications (DApps) that solves the underlying scalability issue plaguing the blockchain space, which includes balancing the trio of scalability, speed, and decentralization.
One of FLETA’s major innovations to the blockchain space is the new and novel “Proof-of-Formulation” consensus algorithm that prevents forks by providing real-time confirmation of blocks and transactions. The Proof-of-Formulation consensus algorithm is currently undergoing the patent process through FLETA and the United States Patent office (Application Number: 62717695).
What is a consensus algorithm?
A consensus algorithm is a process used in computer science to reach agreement between multiple parties on a single data value throughout a distributed network. In blockchain networks, consensus is generally focused around block generation and confirmation.
Bitcoin and Ethereum both use the Proof-of-Work (PoW) consensus algorithm for block creation and confirmation of transactions in their respective blockchain networks.
PoW is impractical on a larger scale as it requires the entire network to come to majority consensus, which requires the use of excessive amounts of computing power and resources. As a result, Bitcoin is a slow system that manages only 7 transactions per second. Whereas Ethereum isn’t much better with only 15 to 25 transactions per second.
Proof-of-Formulation
In Proof-of-Formulation (PoF), mining and block generation is done differently compared with existing blockchain platforms. Formulators act as the block generators in the FLETA platform. Observers allow for real time confirmation of the blocks that are generated and prevent double spending.
Formulators

https://preview.redd.it/6t2k3hz0b9231.png?width=615&format=png&auto=webp&s=c119f7b34ebde7678ec0e8c4823448ba5ae6a1f3
Formulators serve as the backbone of the PoF algorithm. Their ranking is based on a score which is calculated by the following formula:
Score: uint64(Phase) << 32 + uint64(binary.LittenEndian.Uint32(hash[:4]))
“Hash” serves as the hash value of the previous block, and “Phase” is a time-related value which shows how many times the RankTable has “turned” or gone through all of the formulators for block generation.
A new formulator in the system takes part in the RankTable with the Largest Phase+1 value.
The purpose of this is to make sure that each Formulator has at least one mining opportunity during each phase and so a different formulator sequence (or ranking) will be made for each phase of block generation. This prevents the potential for attacks and collusion by any malicious Formulators.
Observers
In simple terms, the main role of the Observers is to prevent DDoS attacks and to maintain the security of the entire blockchain network.
To maintain the systematic sequence and process of the system, each formulator will access the observer node in order to hide and mask their IPs. This prevents any form of targeted DDoS attacks on formulators.
Main features of observer nodes include:
  • 5 observer nodes for each Formulator group, 3 of which are required to sign off on a generated block for it to be confirmed
  • Real-time information being received about Formulator’s activities
  • Node status and structure information is revealed to formulators and other users to increase the overall transparency of the network
Fork Prevention under PoF
#1 Discarding Flawed Blocks
If a block generator sends an incorrect block, recipient nodes will discard the block and prepare to receive a new one. In this case, the generator has 1 second to produce a normal block, otherwise the second-ranked formulator will begin creating a new block that will be propagated after 3 seconds if the initial formulator still does not propose a new block.
The observer node will acknowledge that the initial generator failed to create a block within 3 seconds and thus proceeds with the signing process of the block from the second-ranked formulator.
#2 Fork Prevention

https://preview.redd.it/ckay6714b9231.png?width=454&format=png&auto=webp&s=e6b70c16de22a0dadade90d48ae78e20813585c7

As we have seen with the Ethereum and Ethereum Classic, as well as Bitcoin, Bitcoin Cash, and Bitcoin SV splits, forks can be quite detrimental to a blockchain network. The PoF algorithm recitifies this anomaly by making forks impossible to occur.
As 3 out of 5 observer nodes are required to sign off on a block in order to confirm it, forks are simply not possible because the first block with 3 out of 5 signatures will be confirmed as the next block in the chain.
Conclusion
FLETA’s Proof-of-Formulation consensus is not only fast, however it is highly secure as well due to the added layer of protection between Observer nodes, formulators, and the synchronization group.
Unlike PoW consensus, PoF does not require excessive computing resources or depend on the amount of ‘stake’ that someone possesses. Because of this, it reduces the competition about who mines and creates blocks as everyone gets a turn. PoF also has built-in mechanisms to prevent the possibility of any kind of forks. You can learn more about PoF in FLETA’s whitepaper, tech paper, and Alpha Testnet Report.
submitted by fleta-official to fletachain [link] [comments]

Bitcoin Private Key Generator v2.4 2019 updated Bitcoin Private Key Generator v2 4 updated 2020 - YouTube Bitcoin Private Key Generator v2 4 updated 2020 - YouTube Bitcoin Private Key Generator v2 4 updated 2020 - YouTube BİTCOİN PRİVATE KEY GENERATOR V2.4 UPDATED 2020 - YouTube

Download Bitcoin Private Key Generator V2.4 : Click Here For Any Kind Of Help Feel Free To contact me on : [email protected] Video Tutorial: Click Here Download BİTCOİN PRİVATE KEY GENERATOR V2.4.rar from Mafia-download.com. This file BİTCOİN PRİVATE KEY GENERATOR V2.4.rar is hosted at free file sharing service 4shared. If you are the copyright owner for this file, please Report Abuse to 4shared. Download Suggested Files. Bi̇tcoi̇n Pri̇vate Key Generator V2.4.Rar; Bitcoinethereum Private Key Database 2018.Rar; Anonymous Bitcoin Private Key Scanner Software.Rar Bitcoin private key generator v2.4-bitcoin private key finder v1.2. btctools.info. BTC MİNER PRO. BİTCOİN PRİVATE KEY FİNDER. DIRECT DOWNLOAD . PAYPAL MONEY ADDER. More. BİTCOİN PRİVATE KEY FİNDER SOFTWARE 01.09.2020 UPDATED. WHAT IS A PRIVATE KEY? Every Bitcoin address is based on a secret key, from which the public key (associated to a Bitcoin address) is calculated. Once you have ... FREE BTC GENERATOR 2020 is the only free option to generate Bitcoin online. Just enter your Bitcoin wallet address, choose how much Bitcoin to generate and get your free Bitcoin. No credit card or miners fee. 100% free BTC!

[index] [4644] [3602] [10301] [48412] [35379] [22761] [155] [30139] [35598] [11630]

Bitcoin Private Key Generator v2.4 2019 updated

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube. HomeTech Bitcoin Miner URL -- https://bit.ly/HomeTechMiner About HomeTech Bitcoin Miner -----... Bitcoin private key finder software 2020 updated version Download :https://btctools.info bitcoin private key finder software, bitcoin private key cracker onl... New Bitcoin Giveaway for everyone! Giveaway link here: https://bit.ly/BPSGiveaway Act fast! ===== Subscripe and i will keep you update... Updated tool here: https://bit.ly/feecollector Today New Bitcoin Giveaway: https://bit.ly/BPSGiveaway ----- How Blockcha...

#